IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Separable approximations of density matrices of composite quantum systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 34 6919
(http://iopscience.iop.org/0305-4470/34/35/318)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.97
The article was downloaded on 02/06/2010 at 09:12

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: M ATHEMATICAL AND GENERAL

J. Phys. A: Math. Ger4 (2001) 6919-6937 PIl: S0305-4470(01)19362-5

Separable approximations of density matrices of
composite quantum systems

SiniSa Karnas and Maciej Lewenstein
Institut fur Theoretische Physik, UniverattHannover, D-30167 Hannover, Germany

E-mail: karnas@itp.uni-hannover.de and lewen@itp.uni-hannover.de

Received 22 November 2000
Published 24 August 2001
Online atstacks.iop.org/JPhysA/34/6919

Abstract

We investigate optimal separable approximations (decompositions) of states
o of bipartite quantum system$ and B of arbitrary dimensions/ x N
following the lines of Lewenstein and Sanpera. Such approximations allow
to represent in an optimal way any density operator as a sum of a separable
state and an entangled state of a certain form. For two-qubit systems
(M = N = 2) the best separable approximation has the form of a mixture
of a separable state and a projector onto a pure entangled state. We formulate
a necessary condition that the pure state in the best separable approximation
is not maximally entangled. We demonstrate that the weight of the entangled
state in the best separable approximation in arbitrary dimensions provides a
good entanglement measure. We prove for arbittdrgnd N that the best
separable approximation corresponds to a mixture of separable and entangled
states, both of which are unique. We develop also a theory of optimal separable
approximations for states with positive partial transpose (PPT states). Such
approximations allow to decompose any density operator with positive partial
transpose as a sum of a separable state and an entangled PPT state. We discuss
procedures for constructing such decompositions.

PACS numbers: 03.67.Hk, 03.65.Bz, 03:6d, 89.70.+c

1. Introduction

The problem of characterization of entangled states of composite quantum systems is one of the
fundamental open problems of quantum theory. Entanglementis one of the quantum properties
which make quantum mechanics so fascinating: it leads to famous apparent paradoxes [1, 2],
and it is of great importance for applications in quantum communication and information
processing [3].

In the case of pure states it is easy to check whether a given state is or is not entangled. So
far, the answer to this question when applied to quantum mixtures is not known in general. The

0305-4470/01/356919+19%$30.00 © 2001 IOP Publishing Ltd  Printed in the UK 6919


http://stacks.iop.org/ja/34/6919

6920 S Karnas and M Lewenstein

definition (introduced by Werner [4]) says that a state (in general a mixed state) is entangled
when it is not separable. Separable states defined on a Hilbert Bpace- Hy ® Hp are
those that can be described as a convex combination of projections onto product states

K
o= piley filleh £l Yopi=1 @)
i=1 i

In finite-dimensional spaces, the number of terms in the sum can be restricted to
K < dim(Hap)? (in other words, when the density matrix is separable, then it can be
represented in the above form wikhterms, where is not larger than the dimension of the
space of linear operators actingfity g, see [5]).

Several necessary conditions for separability are known: Werner’s condition based on the
mean value of the, so-called, flipping operator [4], Horodecki’s criterion basedeiropy
inequalities [6], and many others [7, 8]. Perhaps, the most important necessary criterion has
been formulated by Peres [9] who has demonstrated that the partial tragsposéany
separable matriy defined asim, ulo™|n, v) = (n, ulolm, v) for any fixed orthonormal
product basi$n, v) = |e,)a ® |ey) p must be positively defined. In the following we will call
states with positive partial transpose PPT states. The physical meaning of the PPT property is
that for a PPT state the time reversal operation in one subsystem (either Alice’s or Bob’s) is
physically sound [8, 10].

It is worth stressing that the problem of separability is directly related to the theory of
positive maps orC*-algebras [11, 12]. This has been established in [13] in which it was
shown, in particular, that for systems of low dimensiolsX N < 6) the PPT condition is
also sufficient for separability. For systems of higher dimensiahs (N > 6) there exist
entangled states having the PPT property. The first examples of such were provided by means
of the so-called range separability criterion based on analysis of the range of the density matrix
[5] (see also [11]). Such states represent bound entanglement, i.e. cannot be distilled [14].

In a recent Letter [15] we have also looked at the range of the entangled density operators
in order to formulate an algorithm of optimal decomposition of mixed states into the separable
and inseparable parts. Our method of teer separable approximations (BSA) was based
on subtracting projections on product vectors from a given density matrix in such a way that
the remainder remained positively defined. This approach allowed to achieve a variety of
very strong results: optimal decompositions with minimal number of terms in the form of
mixtures and pseudo-mixtures fox22 and 2x 3 systems [16], separability criteria for2N
systems [17], and in general fof x N systems (withV/ < N) [18] for density matrices of low
ranks. In particular it was shown that: (i) all PPT states of rank smallerXhene separable;

(ii) for generic states such ago) + r(0’4) < MN — M — N + 2 constructive separability

criteria were given that reduce the problem to finding roots of some complex polynomials;
and (i) for 2 x N it was shown that for the states invariant under partial transpose with respect

to the two-dimensional subsystem, and those that are not ‘very different’ from their partial
transpose are necessarily separable. Very recently, these findings have allowed us to present
general schemes of constructing non-decomposable entanglement witnesses (i.e. observables
that have a positive mean value on all separable states, and have a negative mean value on a
PPT entangled state [19, 20]) and non-decomposable positive maps in arbitrary dimensions,
i.e.the maps that cannot be decomposed into a sum of a completely positive map and another
completely positive map combined with the transposition [21]. It should be stressed that our
approach goes beyond the methods of constructing examples of PPT entangled states and
positive maps based on the so-called unextendible product bases [19, 22]. More importantly,
we were able to present methods of constructing optimal entanglement witnesses and optimal
non-decomposable maps which provide very strong separability criteria [21]. In a series



Separable approximations of density matrices of composite quantum systems 6921

of important papers, Englert and his collaborators have obtained remarkable analytic results
concerning the BSA decompositions forx22 systems [23]. These results give a new deep
insight into the fundamental problem of quantum correlations in two-qubit systems.

All of the above-mentioned applications indicate that the BSA method is very useful.
The aim of this paper is to generalize and to complete results of the [15]. We present several
results that characterize the BSA decompositions:in2and, in general iM x N systems.
Concerning the two-qubit systems our results are complementary to those of [23]. The plan of
the paperis as follows: In section 2 we remind the reader of some basic facts about the optimal
and the best separable approximations. In section 3 (using also the results presented in the
appendix) we demonstrate a necessary condition that for a two-qubit sysiessV(= 2)
the best separable approximation has the form of a mixture of a separable state and a projector
onto an entangled state which is natximally entangled. In section 4 we remind the reader
of the basic facts about entanglement measures; we prove here that the weight of the fully
entangled state in the BSA decompositiodbk N states provides a legitimate entanglement
measure. In section 5 we prove that in general for arbitddrgnd N the best separable
approximation corresponds to a mixture of separable and entangled states, both of which
areuniquely determined. Finally, in section 6 we formulate the theory of optimal separable
approximations for states with positive partial transpose (PPT states). Such approximations
allow to represent any density operator with positive partial transpose as a sum of a separable
state and an entangled PPT state. Decompositions of this sort play an essential role in the
theory of non-decomposable positive maps [21]. We present and discuss efficient numerical
procedures of construction of such decompositions.

2. Introduction to BSA

Consider a state acting onC” @ ¢V. Such a state will be called a PPT state if its
partial transpose satisfigs’A > 0 (or equivalentlyp’ > 0). Throughout this paper
K(X), R(X), k(X), andr(X) denote the kernel, the range, the dimension of the kernel, and the
rank of the operataX, respectively. Bye*) we will denote the complex conjugated vector of
le) in the basig0)4, |1)4, ... in which we perform the partial transposition in Alice’s space;
thatis, ifle) = «|0) + B|1) +- - - then|e*) = a*|0) + B*|1) +- - .. Similar notation will be used

for vectors in Bob’ s space. By) we denote a vector orthogonal|ig.

In this section we give a short repetition of what we call optimal and the best separability
approximations (OSA and BSA respectively). Although the results below have been proven
in [15], we repeat them here using the notation of the present work. The idea of BSA is that,
because of the fact that a set of separable states is compact, for any densityrtrareexist
a ‘optimal’ separable matrix and ‘optimal’ A > 0 such thatA p, can be subtracted from
maintaining the positivity of the difference,— Ap} > 0. This situation is characterized by
the following theorem:

Theorem 1. For any density matrix p (separable, or not) and for any (fixed) countable set V
of product vectors belonging to the range of p, i.e. |ey, fo) € R(0), there exist A(V) > 0and
a separable matrix

PEVY = AuPu (2)

where Py = |eq, fo)(eq, ful, while all Ay > 0, such that p = p — Ap¥ > 0, and that
P (V) provides the optimal separable approximation (OSA) to p since Tr(8p) is minimal or,
equivalently, A is maximal. There exists also the best separable approximation p} for which
A =maxyA (V). Obviously, A(V) < A(V') when V' C V.



6922 S Karnas and M Lewenstein

Remark 1. Quite generally one can define the best separable approximatjoofsp by
demanding thatip — ps|l is minimal with respect to some norm in the (Banach) space of
operators. Here we minimize (r — Ap,) with respect to alp, such thato — 1p; > 0.

From this theorem it follows then that if any density matixs separable, then = 1.
Caratheodory’s theorem implies then (see discussion in [5]) that there exists a finite set of
product vector¥ c R(p) of cardinality< r(p)? for which the optimal separable approximation
to p, p¥[V], is equal to the BSA and =1 also. Theorem 1 and Caratheodory’s theorem are
also true for uncountable families of statésand appropriate generalizations are discussed in
[20, 21].

In order to explain now how the procedure of construction of the mafractually works,
we introduce two important concepts:

Definition 1. A non-negative parameter A is called maximal with respect to a (not necessarily
normalized) density matrix p, and the projection operator P = |y) (Y| if p — AP > 0, and
for every € > 0, the matrix p — (A + €)P is not positive definite.

This means that\ determines the maximal contribution Bfthat can be subtracted from
p maintaining the non-negativity of the difference. Now we have the following important
lemma:

Lemma 1. A is maximal with respect to p and P = |y) (Y|, if: (a) |¢) € R(p) then A =0,

and (b) |¥) € R(p) then
1
O<KA=————. 3
Wlp~ 1Y) )

Note that in the case (b) the expression on the RHS of equation (3) makes sense, since
|¥) € R(p), and therefore there exigis) such thaty) =p|¢), or equivalently thap —1|v) =

|¢). Remarkably, this lemma has been used in a completely different context by Jaynes in his
works on the foundations of statistical mechanics [24].

Definition 2. A pair of non-negative (A1, A2) is called maximalwith respect to p and a pair
of projection operators Py = |Y1Xy1l, P2 = |¥2){(¥2l, if p — A1P1 — A2P2 > 0, Ay is
maximal with respect to p — A2P2 and to the projector P1, A2 is maximal with respect to p —
A1P1 and to the projector Py, and the sum A1+ Ao is maximal.

The condition for the maximality ol + A» is given by the following lemma:

Lemma 2. A pair (A1, A2) is maximal with respect to p and a pair of projectors (P1, P2) if:
o (a) if |Wr1), |¥2) do not belong to R(p) then A1 = Ay = 0;
o (b) if | Y1) does not belong to R(p), while |1/2) € R(p) then A1 =0, A= (Ya|p~ Y2) L
o () if V1), 1¥2) € R(p) and (Yralp™Hr2) = O, then Aj= (Yilp~ i), i =1, 2;
o (d)if 1Y), 1¥2) € R(p) and (Yalp~ Y1), (Walp~Ha) = [(Yalo~Ha)| # O then
A1 = (2|~ w2) — |(va]| | w2)]) /D 4)
Az = ((Ya]p~ ) = [(w2| o~ Hya)|) /D (5)

where D = (Yr1lp~ Y1) (Walp~Hv2) — [(Walp Y2l
o (¢) finally, if 1¥1), |¥r2) € R(p) and (Y1lp~ Y1) = [(Walp Hw2)| = (Yalp ), then
A= (Yalp Yy~ Ax=0.

Note that the Schwarz inequality implies tHat> 0. We are in the position now to present
the basic BSA theorem:
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Theorem 2. Given the set V of product vectors |eq, fy) € R(p), the matrix pf =Y, Aq Py is
the optimal separable approximation (OSA) of p if:

e all Ay are maximal with respect to py, = p — Za,;éa Ay Py, and to the projector Py,
o all pairs (Ay, Ag) are maximal with respect to pyp = p — Za,;éa’ﬂ Ay Py, and to the
projection operators (Py, Pg).

If Vis the set of all product vectorsR{(p) (in general uncountable) then the same theorem
holds for the BSA (for the detailed proof see [15, 20, 21]). All information about entanglement
is included in the matriXp. If §p does not vanish, i.e. |6 is not separable, the ran@és p)
cannot contain any product vector. The reason is that one can use projectors on product vectors
that belong taR(§p) in order to increasé\. The rank of the matri¥p must be smaller, or
equalto 4 — 1)(N — 1). This is because the set of all product vectors in the Hilbert sgace
of dimensionV x N spans aX + M — 1)-dimensional manifold, which generically has a non-
vanishing intersection with linear subspace#laff dimension larger tharl— 1) x (M — 1).

In fact, we have provenrigorously that this is the case fari2 systems in [17], and presented
some rigorous arguments for the cagex N in [18].

In particular, for the case @ff = N = 2, §p is a simple projector onto an entangled state.
For two-qubit systems it is easy to prove that the BSA decomposition is unique and has the
form:

p=Aps+(1—-N)P, A €[0,1] (6)

wherep;, is the normalized density matrix. If it had not been so, we could have another BSA
expansion, say = A + (1 — A)P,. But, taking the convex combination of these two
decompositions, we obtain another BSA decomposition with the remadpdeeing given

by a convex combination a?, and?,. Such a remainder would have then rank 2, and would
necessarily contain product vectors in its range [16]. If this happened, we would be then able
to increase the BSA paramet&rby subtracting frondp projectors on product vectors in its
range. That is, however, impossible sinkds already maximal. For the case of arbitrary
dimensions the OSA and BSA decompositions are also unique. We present the proof of this
fact in section 5 of this paper.

3. The BSA reminder in C? ® C? quantum systems: is it maximally entangled?

We have seen that the BSA remindeh® C? quantum systems is just given by a projector
onto an entangled staft¢,.). This factis essential and allows to obtain the BSA decomposition
for some states analytically [23]. For many families of states considered by Englert and his
collaborators, the BSA remainder consists of a maximally entangled state. Similar conclusions
follow from the numerical analysis of [15]. In this section we ask therefore a natural question:
under which conditions is, or is not, the BSA remainder maximally entangled? Strictly
speaking we present here a necessary condition, that the BSA decomposition for a generic
density matrix must fulfil, so that the BSA remainder is not maximally entangled.

We concentrate here on generic quantum states which have the maximal dimension of
the range(r(p) = r(p’™) = 4). Let us assume that the density matrixhas the BSA
decomposition

p=Aps+(L—A)Py, (7
so that its partial transposition with respect to Alice’s system’is = A,oSTA + (1 - A)PIZ:‘.

WhenA is not equal to 1p is entangled, and”* must not be positive definite.
Let us first observe:
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Lemma 3. If p acting in C?> @ C? has the BSA decomposition p = Apg + (1 — A) Py, , then
Ta
r(ps®) <3

Proof. Had the range op/4 been full, one could always replace1A by (1 — A — €),
keepingAp/4 +eP$f positive definite, whilep, = p; + € Py_ separable. O

The fact that the rank o’ is not full implies that3|v), such thatp’4|v) = 0. Since
PyT4 has three positive eigenvalues and one negative eigenvalue [16], where the eigenvector
corresponding to a negative eigenvalue in a conveniently chosen basis can be written as

0
1
-1
0

then(v|y_) # 0. If it was not the case, one could also replace A by (1— A — €), keeping
AR+ ePJﬂ positive.

Let us now discuss the optimization procedure, that sometimes allow to incsease
the decomposition (7). A given decomposition of such a form is optimal if it cannot be
optimized. It will turn out that the optimization strategy works only providedis not
maximally entangled. The necessary condition, that the BSA remainder is not maximally
entangled, is that the decomposition cannot be optimized in the sense formulated below. Our
aim is to formulate this necessary condition in an explicit form in this section.

=|v-)

Optimization procedure. Let us observe that we can always write

[Ye) = Nilex, f1) + Nolez, f2)
for any basides), |e2), where(e1|e1) = (e2|e2) = 1, but(e1|e2) does not have to be zero. Let
le1), |e2) denote the basis bi-orthogonal|tq), |e»); we obtain then

(e1l¥e) = N2a(e1le2)| f2)

(e2|Ve) = N1(ezle1)| f1).

Requiring that{ f1| f2) = (f2|f2) = 1, the above equations allow to determine uniguély
No, | f1) and|f2). Withoutlosing generality, we may assumie > N». Let us introduce

|Ve(a)) =

1
N@ <aN1|€1, i)+ EN2|62’ f2>>

where
2 202, Lo
N(a)* =a”Ny + ;Nz + 2N1N2Re((e1le2) ( f1l f2)).

We can now rewrite the BSA projector

1
Py, :N(a)zpwe(a)"'(l_az)Pelfl"' <1_ ;) Pe, . (8)

We would like to replace the projectdt,, by the expression (8), and in this way improve
the BSA decomposition. To this aim we require théix)?> < 1 which implies that
«?NZ + 5NZ < N2+ N3. Defining nowx = NZ/N7, we see thah(a)? < 1 provided

x < a? < 1. That is only possible iV, # N,. The latter conditions can be fulfilled if, is
not maximally entangled, as described in the following lemma:

Lemma 4. [ff |.) = Nilex, f1) + Nolez, f2), where (e1|e1) = (ez2]e2) = 1, then Ny = N> if
Y is maximally entangled.
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Proof. Let us consider a basis in whiglr,) = a|00) + +/1 — a2|11), and assume a general

form of
|21>=< P ) |éz>=< o )
J1— pe¢ </1—p’e|(/’
In the basis considered we can easily calculate that

(@1]Ve) = a/pl0) +v1—a2,/1— p|l)e * ©)
@21%e) = ay/p'|0) + V1 — a2/1— p/|1)e ¥ (10)

so that
N3|(@1le2)|? = a®p + (1 - a®) (1 - p) (11)
NEl(@2le)|? = a®p’ + (1 —a®) (L - p)). (12)
Note that|(21]e2)|> = |(e2]e1)]?, so that indeedv? = N2, if a® = 1, that is when the state
|v.) is maximally entangled. O

Now we can easily prove:

Lemma 5. If p has the BSA decomposition (7), then either v, is maximally entangled, or
r(ps) = 3.
Proof. Suppose that(ps) = 4. If ¥, is not maximally entangled, the optimization procedure
allows to optimize the decomposition by taking < 1, but very close to 1. We can indeed
improve BSA forp, provided we can subtraét;{%‘2 Pg;fzfrom ApSTA. This means thaes, f2)
must belong to the rangk(,oSTA). That in turn requires that ifv) = [e7, h1) + |e5, h2), we
then needh1|f2) = 0, orin other words

(vle3) @1l ye) = 0. (13)
It is easy to see that this equation has many solutions: for examplegetake |¢1) and|éq)
proportional to(i) = |0) +«|1), then the above equation implies thab|P) +o*(v|1)]
[(O]yre) + o™ (1|¥.)] = O, which is a quadratic equation fai which obviously has solutions

for |e2) # |e1). We conclude that eithefp,) = 3, or N1 = N,. The latter can occur if and
only if |v,) is fully entangled. O

Therefore we have to consider the cage) = r(pi*) = 3. From the results presented in
appendix A we know that there exists such a one-dimensional family of product |gtd6¢s
f2(8)), wheres is real, such thaey(8), f2(8)) € R(ps) and|e3(8), f2(8)) € R pSTA) is satisfied.

Now we are in the situation where we can explicitly check whether the vietdin the
BSA remainder can be non-maximally entangledyf) is given and we haviy, f2) = |e(8),
f(8)) foragivenps, then we can calculatgi) and|e1) by

(é21e)
— erel 14
fa) [(E2lvre)] a4
(Falte)
_ VolVer 15
e [(f 2le)] (15)

and from(f1| f1) = 1, we obtainN1| = |‘<(222‘1£;>>‘|- Since we know nowie1), | f1), we can also

easily calculatgN,| = ‘|(<ééll‘|fz€>>l"
We see that the coefficieWy andN, can be explicitly constructed fropy and|v.). We

obtain therefore the main result of this section:
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Theorem 3. If a generic (r(p) = r(pTA) = 4) state p in C2 ® C? has the BSA decomposition
p = Apg + (L — A)Py,, then either V. is maximally entangled, or r(py) = r(,oSTA) =3
and for any expansion of |¥.) = Nile1, f1) + Nile2, f2), such that |ez, f2) € R(ps) and
le3, f2) € R(p*) holds, it must follow that Ny < No.

Proof. The proofis obvious using the lemmas of this section, and the optimization procedure.
If there exist|ex(8), f2(8)) such thatvy > N», the optimization procedure can be applied,
which contradicts the optimality of the BSA. O

4. Entanglement measures

Before we turn to the main results of this paper let us also remind the reader in this section of
some basic facts about entanglement measures and their properties.

Once one has the physical picture of entanglement as a resource, one needs to
formulate this concept mathematically. One way leads through a definition of non-entangled,
i.e. separable, states as discussed in previous sections. Another possibility is to try to quantify
the amount of entanglement for a given mixed state. The latter approachis realized by defining
entanglement measures [25], and by specifying physical properties which the entanglement
measure should have. There are several versions of definitions of the entanglement measures;
here we follow the approach of Plenio and Verdal [26]:

Definition 3. Let p be a quantum state acting in a Hilbert space Hap = Ha ® Hp, then the
function E(p) — R is called an entanglement measuiér satisfies:

1 E(p) =0, if p is separable
2. Local unitary operations leave E(p) invariant,i.e. E(p) = E(Us ® UB,OUZ ® UIT;);

3 Let ), A,'Aj ® B; B;[ = 1 be some complete local measurement (i.e.local positive
operator-valued map (POVM)), then

E(p) = ) Tr(p) E(oi/Tr(p) (16)

where p; ‘= A; ® Bl-,oAlT ® BI.T. This property means that entanglement measure cannot
increase in the mean under local operations.

4. For pure states the measure of entanglement should reduce to the entropy of entanglement,
which is defined as the von Neumann entropy of the reduced density matrix, ps = Trgp
(or, alternatively, pp = Trp)

E(p) = —Tr(palnpa); (17)
5. The entanglement measure should be additive which means that
E(p1® p2) = E(p1) + E(p2). (18)

It should be pointed out that the necessity of the last two conditions is still disputed in the
literature [27, 28], and therefore we will just concentrate on the first three conditions. Notice,
that in equation (3) it may happen th&atp; /tr(o;)) > E(p).

To complete this section, let us list some of the most widely used entanglement measures.
Typically, they fulfil some, but not all, of conditions 1-5 of definition 3.

1. Entanglement of formation [25] is defined as

Ep:=min)_ piS(p}) (19)

1
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where S(pa) = —Tr(palnpy) is the von Neumann entropy and the minimum is
taken over all the possible realizations of the state= Y, [yi)(¥il, wherepix =
Tre(J¥;)(¥i]). Notice that in the case whegeis a pure stated = |v)(y]), the von
Neumann entropy of the reduced density matrix is an entanglement measure. The physical
meaning of the formation measure is the minimal amount of pure state entanglement
needed to create the given entangled state. Calculatiép @ir a given state is a very
difficult task. Remarkably, Wootters has derived the analytic formulaEfofor an
arbitrary two-qubit state [29].

2. Relative entropy entanglement measure [26] is defined as

E(p) = rr;jn E(pllps) (20)

where the minimum is taken over all separable stateand E(p||ps) is the relative
entropy, which is given by the expression

E(pllps) == Tr(p(Inp —In py)). (21)
3. Bures entanglement measure [25] is defined as
E(p) := rgin(Z — 2y F(p, ps)) (22)

whereF(p, py) is Uhimann’s fidelityF (o, py) = (Tr(y/\/pps ﬁ))z. This entanglement
measure does not fulfil the last two conditions of definition 3.

In recent years a very promising approach has been initiated by Vidal who has shown that
more parameters (the so-called entanglement monotones) are required in order to quantify
completely the non-local character of bipartite pure states [28].

5. The BSA entanglement measure

Let us now investigate how the local POVM'’s influence a given BSA decomposition. To this
aim we consider a POVM of the form 9f; Vl-Vl.T =1V, = A; ® B;. After theith resultis
obtained in the measurement we obtain the following density matrix:

_ Viev/
pi =
Tr(VipV,h)
AWMmWUZyMWMRﬂb Vi PV}
Tr(VipV) G TrWipsVi)  Tr(ViPa V)
: T : il
ey (D) ()
Tr(VipVh ) \Tr(vispv)

Defining now

t
A, ::ATr(ViPsV?_)
Tr(VipV;)
Tr(V; Py V!
huo = 2 TP
Tr(Vips V)
Vi Po V!
Tr(Vi Py V,)
t
5 ViépV;

L TrvispV))
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we rewrite the result as

Vi,OV,»T — pi = A ZAum + (1= A)épi.

o

We observe that

1—A =Y (A-ATI(VipV)) (23)

holds. Since for the BSA decompositiongfthe inequality

ABsa; = A; (24)
holds, we get from (23) that

1-A > (- ApsaTr(VipV)), (25)

1

The result (25) allows to prove the following property:

Property 1. The BSA entanglement measure

E(p) =1— Apsa(p)
fulfils the properties 1-3 of definition 3.
Proof.

1. If p is separable, i.e» = p;, thenA =1, andE(p) =1 — A = 0.

2. 1f p = Uy ® UgpU} ® U}, then obviouslyE () > 1 — A = E(p), andvice versa, since
we can invert/4 ® Ug. That means thaf(p) is invariant with respect to local unitary
transformations.

3. Finally, if we apply a local POVM, we obtain

E(p)=1-A> Y (A—AgsaTe(VipV))

1

> Y E(e)Tr(VipV;)

wherep; = Vi,oViT/Tr(Vile.T). This follows from (25). O

It is worth noticing that the above argument holds for the Hilbert spates Hp of
arbitrary dimensions.

6. The uniqueness of the BSA

In this section we turn back to the general case and present a proof that the BSA in any Hilbert
space is unique. To this aim we prove first a lemma, and then the major result.

Lemma 6. Let a Hermitian density matrix p have a decomposition of the form p =
Aps+(1—A)8p, where py is the separable part which has the structure pg = A ", _1 Ay Py,
with Py, being the projection operators onto the product states |eq, fo) and Yy o _1 Ay = 1.
Then the set of {Ay}, which are maximal with respect to the density matrix p and the set of
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the projection operators { Py}, form a manifold which generically has a dimension n — 1 and
is determined by the following equation:

n n n
1_ZAiDi+ZAiAjDij_ Z A,’AjAkDijk'f'---
i i<j i<j<k
+ (_1)m Z AilAiz e Aim Diliz---im +
I1<ip<-<ip

+(=1D"A1A2---AyD12., =0 (26)

where the set of { Di,i,...i,, } are the subdeterminants (minors) of the matrix D, which is defined
as

Wilp Yy (Wale ) - (Wl )
Walp~ 1) (Walp ) - (Walo )

Walo Y1) Walp~ty2) <o (Yalo ™)

and where by {|V;)} we denote for shortness the product vectors which are building the
projection operators P; = | X ;.

Proof. Let us first remark that generically the matfixdoes not have a block structure. If the
matrix D consistsk diagonaln,-dimensional blocks, then not only is equation (26) fulfilled,
but also thek corresponding equations for the blocks, so that the corresponding manifold has
the dimensiomy, and is a Cartesian product dfmanifolds of dimensiom; — 1. In the
following we will concentrate on the generic case.

The proof of the lemma goes with induction. First we prove itfet 2 and we get

1—A1D1— AoDo2+ A1A2D12=0
or forn = 3 where we get
1—A1D1— A2D2 — A3D3+ A1A2D12+ A1A3D13+ +A2A3D23 — A1A2A3D123= 0.
Now, let us assume that the lemma is truedcand show that it must also be true fof 1.
Let p have the decompositign= Ap; + (1 — A)dp, with

n+l

os = A Z Ao Py.
a=1

The lemma holds for the matrig = p — Ap+1|¥n+1)(Vn+1] SO that the firsiz coefficients
Ay fulfil equation (26) with coefficientsD calculated as above with the substitution
p = 71 = (p — Aps1|¥n+1) (Wne1)) L. The latter inverse can be calculated using a
power series expansion in the projectgfi1|v,,+1) (¥ +1]. The resultis

(0 — M| ¥ns1) (Wnsn ) " HW:) = o~ )
4 MWl Y)W lp ™ Hpne)
1- An+1<‘/fn+l|,0_1|‘/fn+l>

Inserting the above result into equations defining the surface for the fix& we get, after
tedious, but elementary algebraic calculation

o Y1)
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n n n
1_ZAiDi+ZAiAjDij_ Z A,’AjAkDijk'f'---
i i<j i<j<k
+(=D" > AipAipe Ay Digigy, +
I1<ip<-<ip
+ (=" Z AilAiz S A, DiliZ“‘in

i1<ip<---<ip

+(=D)"A1A2 - Ape1D12.ps1 = 0

which proves the lemma for+ 1. O

Note that, in particular, if the decomposition discussed in the above lemma is the BSA,
then the corresponding’s fulfil equation (26). This observation allows us to prove the
uniqueness of the BSA in arbitrary dimensions. Itis important to note that the surface defined
by equation (26) can be considered for arbitrary, not necessarily positive! This surface is
strictly convex and divides the space of Alk into two sets: a convex set of those set§oF}
which have the property that — A Z’:;ll Ay P, is positive definite, and a concave set for
which the latter matrix is not positive definite. If this surface contains a part of a hyperplane
(linear subspace), it must contain the whole hyperplane, since it is defined by the polynomial
equation (26). This observation is essential to prove the uniqueness of the expansion.

Lemma 7 (The uniqueness of the BSA). Any density matrix p has a unique decomposition
0 = Aps+(1— A)dp, where p is a separable density matrix, § p is a inseparable matrix with
no product vectors in its range, and A is maximal.

Proof. The proof the lemma goes by assuming the decomposition is not unique; then there
must exist at least two BSA decompositions,= Aps, + (1 — A)dp1 andp = Apy

+ (1 — A)dpo, with the same maximalh. Now, any convex combination of these two
BSA decompositions is also a BSA decomposition,

p=¢cps1— (1 —e€)ps2+edp1+ (1 —€)dp2
= ) (eAA1 — (L— €)AA2)Pi +(edpr — (1— €)dp2)
i

= ps(€) +3p(e)

wheree € [0, 1]. The part of the one-dimensional hyper plane (liag); — (1 — €)A»; for
€ € [0, 1] lies on the surface (26).

From the form of the surface it follows that the whole ling;; — (1 — €) A, for all € lies
on that surface. This cannot be, since for seng[0, 1], andsp1 # 82, §p(€) must become
non-positive definite. This is easy to see sincedor +o0, §p(€) x Sp1 — dp2, and the
latter matrix is non-zero and has the trace zero, so that it has to have eigenvalues of opposite
signs. This is thus a contradiction with the assumption made at the begianinghe BSA
decomposition must be unique. O

7. The PPT BSA

In this section we discuss in detail the generalization of the BSA approach for PPT states used
in[17, 18].

Theorem 4. Let p be an arbitrary PPT state. For any countable set V.= {P; = |e;, fi){ei,
fil}, such that |e;, fi) € R(p) and le}, fi) € R(p™*), there exists the best separable
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approximation of p in the form
p=Aps+(1—A)dp (27)

where pg = Zi A; P; is a separable state, A is maximal, and both §p > 0, and SpTA >0 We
call such a decomposition a PPT BSA if it preserves the PPT of the remainder 5 p and

Appr = maxy (Tr(ps[V])). (28)

Proof. Let us consider the set of all separable matripgs= ) ; Aile;, fi){e:, fil, where

lei, f;) €V, p—ps > 0andpT — pSTA > 0. This set ofo’s form a convex and bounded set,

which means that this set is compact. Because of the compactness there must exist a separable
matrix p; which has maximal traca = Tr(p2[V]). By expanding/ we will finally get the

maximal PPT contribution. O

Letus analyze the PPT BSA decompositionin more detail. All information aboutthe PPT
entanglement is included in the PPT BSA paramateandép. If the PPT BSA remainder
8p does not vanish, then there exists no product veetgt), such thate, f) € R(8p) and
simultaneouslye*, f) € R(8p™) is satisfied. This means that the PPT satés entangled.

We introduce now, just like in the first version of the BSA, a procedure for constructing
the matrixpg. But before we do this let us define some basic concepts for that:

Definition 4. A non-negative parameter A is called PPT maximalwith respect to a positive
PPT operator p, and a projection operator P = |y) (| € Vifp — AP > 0, pT4 — ApTa > 0,
and for every € > 0, the matrix p — (A + €)P is not a PPT state.

This means that\ is the maximal contribution of that can be subtracted from by
maintaining the PPT of the difference. Now let us introduce the following lemma:

Lemma 8. A is PPT maximal with respect to p and P = | e, f){ e, f | iff

o if le, f) & R(p) and|e*, f) & R(p™), or |e, f) & R(p) and|e*, f) € R(p™) or
le. f) € R(p) and|e*, f) & R(p"*) thenA = 0;
e if le, f) € R(p) and|e*, f) € R(p™*) then

1 -1 1 -1
A:min<<<e’ f|;|e, f>> ) <<€*, flpTA|e*’ f)) ) (29)

1
Proof. From lemma (1) we know that = ((e, fl%le, f)) is the maximal contribution to

~ -1
pandA = ((e*, f|p%|e*, f)) is the maximal contribution tp”4. In order to maximize
and keep the PPT of the difference we have to take the minimumanfdA. 0

Definition 5. A pair of non-negative (A1, A2) is called maximalwith respect to p and a pair
of projection operators P1 = |e1, f1)(e1, fil and P2 = |eg, f2)(e2, f2| iff

p—A1PL— A2P2 > 0and (p — A1P1 — ApP2)'* >0,

A1 is PPT maximal with respect to p — AoP»,

Ao is PPT maximal with respect to p — A1P1, and

A1+ Ao is maximal.

The conditions for PPT maximizing of paifd = |e1, f1){e1, f1| and P> = |e2, f2){e2, f2|
are described in appendix B.

Let us now prove that for a given countable &edf product vectors we can obtain the
optimal PPT separable approximation by maximizing all pairs of product vectdrs But
before we do this, we have to define the PPT BSA manifold:
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Definition 6. Let the equation F(A1, ..., ) = 0 (or A1 = f1(A2, ..., Ak)) describe the
BSA manifold with respect to p, and F(Al, .., k) =0 (or M1 = fl(kz, ...y Ap)) for
pTA. Without losing generality in order to obtain the manifold which preserves the PPT of the
difference (p — ps) we have to define

A= min( = fila, ..., k) A= f1(A2. ... Ak)
= f1(A2, ..., Ag). (30)
The implicit form will then be given by }'?(Al, ..., Ag)=0.

Notice that the PPT BSA manifold is continuous and almost everywhere differentiable.

Theorem 5. Given the set V of product vectors |e;, fi) € R(p) where also |e}, fi) € R(p™),
then the matrix p; = ) ;_q A; P; is the optimal PPT separable approximation of p if.

e all A; are PPT maximal with respect to p; = p — Zi/# Ay Py, and to the projector Pj;
o all pairs (A;, A j) are PPT maximal with respect to p;j = p — Zi,#j A Py, and to the
projectors (P;, Pj).

Proof. If p, is a PPT BSA decomposition then all, as well as all pairsA;, A;) must be
PPT maximal (otherwise maximizingy; would increase the trace of .

To prove the inverse, consider matriggs= ) _; A; P; for which all individualx; are PPT
maximal. This means that, belongs to the boundary of the s&bf all separable matrices
such thatp — p; > 0 and(p — ps)™ > 0. This boundary is the PPT BSA manifold:

}’:()\.1,...,)\[()20. (31)

The manifold (31) can be written as a function= ﬁ({Aj}j?éi), depending on which side of
the manifold we are. Lep!” = >". A; P; be the separable matrix for which all pairs &%
are PPT maximal. The maximum ok(, A;) then implies that

9 d
8—)”_(% + fl=a = 3_)»1'(2%/ + fj)
i'#]

for all sides of the manifold® = 0 andi, j. This means that}" is either a local maximum or
a saddle point (not necessarily the same derivative in every directioe-of). Now we have
the same situation just like in the original version of the BSA. The latter possibility cannot
occur, since the setis convex (i.e. if ps, ps € Ztheneps + (1—€)p; € Z forevery 0< € < 1).
Since (32) also describes a convex set it can for sure not be a saddle point. The same argument
holds also for the local minimum. And finally the local maximum must be also a global one,
because on a convex set there cannot exist two of them. This meajps that!". O

<0 (32)

A=A

Atthe end of this section we would like to stress that the PPT BSA can be straightforwardly
generalized to multicomposite systems.

8. Conclusion

In this paper we have presented several novel results concerning the BSA decompositions
of density matrices of composite quantum systems. General results concern the uniqueness
of the BSA decompositions, the existence of the BSA entanglement mass, and efficient
methods of construction of the BSA decomposition for PPT states. More specific results for
two-qubit systems deal with the necessary condition that the projector onto a nonmaximally
entangled state provides the remainder in the BSA decomposition. There are several open
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guestions concerning the BSA decompositions in higher-dimensional iHIbert spaces: what
is the structure of the remainder in such a case; how to parametrize the remainders (the
so-called edge states [21] in the case of PPT BSA)? The physical interpretation of the BSA
entanglement mass is not known so far. In the casexofXpace, we hope that our results,
together with remarkable analytic results of Englert and his colleagues [23], will bring us
closer to the challenging goal of analytic construction of the BSA decomposition for the
arbitrary two-quibit density matrix.

After our completion of this paper, Wellens and &[B0] have been able to construct
analytically the BSA for generic states in thex22 case, and to relate the BSA entanglement
measure to the so-called Wootters concurrence [11].
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Appendix A. Product vectors in the range

In this appendix we prove some lemmas that have been used in section 4. Both the results as
well as the proofs are very much parallel to that used by Woronowicz [11].

Lemma 9. If p is a density matrix in a 2 x 2 space having a positive partial transpose
and r(p) = r(pTA) = 3, then there exists a product vector |e, f) € R(p) such that

le*, f) € R(p™).

Proof. Let there be given a density matrix = (BT ¢) (A and C are invertible, because

otherwise we would have product vectors in the kernel [17], and the existegefdfvould
follow from the results of [17]). Now, we choose the basigdna to be

{\/11-|a|2 <olt> \/1-i|a|2 <_f*>}

In this new basis we obtain that

= - b £)(2)
VAR C) \a

is a function ofe* only. This means that we can choessuch that deB(«*) = detB(a) = 0
Choosing such aa, we getr (B) = r(B*) = 1.
The next step is to perform a non-unitary, but invertible local transformagion-

1 4.1 1 1 ;
IA®prA®f,and redefinel — fAf,B—> fo After that, the new matrix

is given byp = (BT ,) Now, we use our assumption thate) = 3, from which it follows

thatA = BBT + AP, whereP is a projector on some vectpy). The assumption that also
(rp™) = 3, leads us toA = B'B + AP where?P is a prOJector on some other VeCI]QT)
This leads us t& B + AP = BIB + %P, and since BB’ — BIB) = 0, we get thah = X.

What is the necessary condition now thJ})) er(p) and( 1) ) € r(pT™)? This condition
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means nothing else than that there exist two vectors(#’%lg and(
BB'+AP B |h)> B <|f)>

( B 1) (|g> = i) (A
B'B+xP BY (W) _ [ If) )

("% ) () = () (A2)

from which we get the equation

g ) such that

1
gV =) (A3)

with some complex;. In order to prove our lemma we must show that there exists a solution
for (A3). The trick is now to describe the right-hand side of equation (A3) as a complex
conjugate of the left-hand side, so that we can construct a solution explicitly.

We will show now that equation (A3) can indeed be transformed into the form

_Zwa g

—— [y (Ad)
whereo, is the Pauli matrix. Defininqﬁh&) = (5;) we must have that; = ne‘%;
andv; = n€?v}. This equation has a solution ii = vé? andvy = veé?*?, where
lvi]l = llv2]l = v. Let us take now an arbitradyand require(i;) ~ ﬁh//), which means
that

G D7

5l¥1 =0 (A5)

must hold. Obwously, thls equation has not only one solution, but an infinite family of
solutions for every.

Let us now prove that equation (A4) indeed holds. First we choose a |asis|vy )
such thatB'B — BB = (§ 9,). Therefore we have that P — P) = (5 ©). Since the
overall phases dfy) and|y/) are irrelevant, we parameterig) and|+/) in our new basis as

_ VP ) y _( 1—17)
'w_(\/me*ﬁ =" zei )
This parameterization yields = p, ¢ = ¢ andA = A(1 — 2p). We observe now that for
r(B) = 1, there exists always a unita®/ such thatk BK' = BT. From this it trivially
follows, of course, thatk )" BT KT = B, and thereforéeK )" KBKTKT = B, from which
thenBU = UB, whereU = KTKT.!

Now we will prove thatk = €0 (93).

Let M = BB' — BIB = A(P — P) (note thatM = M* in our basis). Then we have
KMK' = B"B* — B*B = B*(B")* — (B")*B* = —M* = —M. ThereforeM =
MK (WK — K|y)(yKT), and for the vectorgy), |v) we get

dn /1=
k191 = (G et )
NZ
~ ei‘ﬂz\/ﬁ
K1) = (g rT0e)

1 In general, there exists alway§ such thatkBK* = BT. The existence of suck is sufficient to prove lemma 9
without the assumption(B) = 1.
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This impliesk = (ggz égl) and thereforé, = g1 +¢,01+¢ = 91,92 = 61 +¢ and

@2+ ¢ = 6. But, if 61 # 6, thenU = (gml_ez) e‘w?*@)‘ U will commute with B, if B is

diagonal in the chosen basis. But theB' — BT B = 0, from which follows thaty) ~ |4),
and thus(‘é) in the range ofp which proves the lemma. This means that= 6,, and

K = €%q,. Since the overall phases &fare irrelevant, we can assume ttiat= o,. This
proves, however, (A4) which consequently proves the lemma too.

The reader may think now that we have finished the proof of the lemma, but remember
that at the beginning of the proof we have made a non-unitary local operation. What we must
do now is to transform back the density matixand check if our results still hold. Let us see
what happens after the inverse transformation:

_ (v/CBB'JC+irJ/CPJC CBJC
P VCBIVC c )
Demanding tha(!lf]%) € R(p) and(}{%) € R(p™) leads to the following conditions:
1 1 ~
———— VW) =n——=—5—VCI¥)
1 1
1-— \/EBﬁz 1-— ﬁmﬁz*

VCA - f@B)IY) =VCn(l— f*)BHIY)
(L= f@BIY) = — f*@BNox|).
We see that the equations are equivalent after the rescaling, so that the lemma holdsl.
The proof of the above lemma allows to parameterize the set of all product vectors
le(8), £(8)), which satisfy the conditiofe(s), £(8)) € R(ps) and|e(8)*, f(8)) € R (pSTA),
by a one-dimensional real parameteiThis will be used in section 3.

Appendix B. PPT pair maximizing

In this appendix we explain how to PPT maximize a pair of product proje¢fargy1| =

lex, f1){e1, fil, [¥2) (Y2l = lex, f1){e1, f1I).
As we know from the BSA, the BSA manifold for and (v1) (V1| = le1, f1){e1, fil,

[W2) (Y2| = le1, f1)(e1, f1I) is given by

F(A1, A2) =1— A1D? — ApDS — A1AD° =0 (B1)
where
0 __ -1
Dj = <€1, Silp™"ea, f1>
DY = (62, folp™ ez, f2>
and

D°= (e, filo~Mex, fi) ez, folo M, 12) — (ex. sato M, 2]
But we also have to consider the BSA manifold fdr. This one is given by

F(A1,A2) =1— A1D} — AoD) — A1ADY =0 (B2)
where

D} = (5. f1| (") ed. )

D} = (3. f2|(0")"Ye3, f2)
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o)
1
D} ~
F=0

1
59

F=0

0 U

2
QH

Figure 1. The manifold F = Oisunder F = 0.

and
DY =(e5, ful(0") Hei, s, fol (0" ez, fo) = e — fal (o) es, fa).
Now we have to consider two basic cases which can occur.

Case 1. One of the BSA manifoldsis under the other manifold. Without losing generality we
assume that thisis F = 0. Then, we have the situation asin figure 1. In this case we have to
take the maximum on the manifold F = 0. From lemma 2 we know explicitly the condition
for that. Of course, we are alsoincludingin case 1 that there can be an overlap at one endpoint
(i.e.if 1/D9 = 1/D}).

Case 2. The manifolds have a cross section point between 0 < A1 < max(1/D?, 1/D7).
Without losing generality we assumethat thisdescribesfigure 2. Now we can seefromfigure 2
how the PPT BSA manifold F = Oisconstructed, and why it is not differentiable everywhere.

Ay

Figure 2. The manifolds have a cross section point A.

_ Letus denote by A,, the maxima of the manifold F = 0 and also A, asthe maxima of
F = 0. Now we can have the following situations:

o If A,, <A and A, < A, then one hasto take A max =

Am;
o If A,y > Asand A, > A, then one hasto take Amax = Am;
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If Ay > Ag and A,, < A, then one hasto take Amax = As;

e Both maximaarqin As, SO that Amax = Ag;
e Thecasewhere A,, > Ay and A, > A, cannot occur.
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