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Abstract
We investigate optimal separable approximations (decompositions) of states
� of bipartite quantum systemsA and B of arbitrary dimensionsM × N
following the lines of Lewenstein and Sanpera. Such approximations allow
to represent in an optimal way any density operator as a sum of a separable
state and an entangled state of a certain form. For two-qubit systems
(M = N = 2) the best separable approximation has the form of a mixture
of a separable state and a projector onto a pure entangled state. We formulate
a necessary condition that the pure state in the best separable approximation
is not maximally entangled. We demonstrate that the weight of the entangled
state in the best separable approximation in arbitrary dimensions provides a
good entanglement measure. We prove for arbitraryM and N that the best
separable approximation corresponds to a mixture of separable and entangled
states, both of which are unique. We develop also a theory of optimal separable
approximations for states with positive partial transpose (PPT states). Such
approximations allow to decompose any density operator with positive partial
transpose as a sum of a separable state and an entangled PPT state. We discuss
procedures for constructing such decompositions.

PACS numbers: 03.67.Hk, 03.65.Bz, 03.67.−a, 89.70.+c

1. Introduction

The problemof characterizationof entangled states of composite quantum systems is one of the
fundamentalopen problems of quantum theory. Entanglement is one of the quantum properties
which make quantum mechanics so fascinating: it leads to famous apparent paradoxes [1, 2],
and it is of great importance for applications in quantum communication and information
processing [3].

In the case of pure states it is easy to check whether a given state is or is not entangled. So
far, the answer to this question when applied to quantum mixtures is not known in general. The
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definition (introduced by Werner [4]) says that a state (in general a mixed state) is entangled
when it is not separable. Separable states defined on a Hilbert spaceHAB = HA ⊗ HB are
those that can be described as a convex combination of projections onto product states

� =
K∑
i=1

pi
∣∣eiA, f iB 〉 〈eiA, f iB ∣∣ ∑

i

pi = 1. (1)

In finite-dimensional spaces, the number of terms in the sum can be restricted to
K � dim(HAB)

2 (in other words, when the density matrix is separable, then it can be
represented in the above form withK terms, whereK is not larger than the dimension of the
space of linear operators acting inHAB, see [5]).

Several necessary conditions for separability are known: Werner’s condition based on the
mean value of the, so-called, flipping operator [4], Horodecki’s criterion based onα-entropy
inequalities [6], and many others [7, 8]. Perhaps, the most important necessary criterion has
been formulated by Peres [9] who has demonstrated that the partial transpose�TA of any
separable matrix� defined as〈m,µ|�TA |n, ν〉 = 〈n,µ|�|m, ν〉 for any fixed orthonormal
product basis|n, ν〉 ≡ |en〉A ⊗ |eν〉B must be positively defined. In the following we will call
states with positive partial transpose PPT states. The physical meaning of the PPT property is
that for a PPT state the time reversal operation in one subsystem (either Alice’s or Bob’s) is
physically sound [8, 10].

It is worth stressing that the problem of separability is directly related to the theory of
positive maps onC∗-algebras [11, 12]. This has been established in [13] in which it was
shown, in particular, that for systems of low dimensions (M × N � 6) the PPT condition is
also sufficient for separability. For systems of higher dimensions (M × N > 6) there exist
entangled states having the PPT property. The first examples of such were provided by means
of the so-called range separability criterion based on analysis of the range of the density matrix
[5] (see also [11]). Such states represent bound entanglement, i.e. cannot be distilled [14].

In a recent Letter [15] we have also looked at the range of the entangled density operators
in order to formulate an algorithm of optimal decomposition of mixed states into the separable
and inseparable parts. Our method of thebest separable approximations (BSA) was based
on subtracting projections on product vectors from a given density matrix in such a way that
the remainder remained positively defined. This approach allowed to achieve a variety of
very strong results: optimal decompositions with minimal number of terms in the form of
mixtures and pseudo-mixtures for 2× 2 and 2× 3 systems [16], separability criteria for 2× N
systems [17], and in general forM × N systems (withM � N) [18] for density matrices of low
ranks. In particular it was shown that: (i) all PPT states of rank smaller thanN are separable;
(ii) for generic states such asr(�) + r(�TA) � MN − M − N + 2 constructive separability
criteria were given that reduce the problem to finding roots of some complex polynomials;
and (iii) for 2× N it was shown that for the states invariant under partial transpose with respect
to the two-dimensional subsystem, and those that are not ‘very different’ from their partial
transpose are necessarily separable. Very recently, these findings have allowed us to present
general schemes of constructing non-decomposable entanglement witnesses (i.e. observables
that have a positive mean value on all separable states, and have a negative mean value on a
PPT entangled state [19, 20]) and non-decomposable positive maps in arbitrary dimensions,
i.e. the maps that cannot be decomposed into a sum of a completely positive map and another
completely positive map combined with the transposition [21]. It should be stressed that our
approach goes beyond the methods of constructing examples of PPT entangled states and
positive maps based on the so-called unextendible product bases [19, 22]. More importantly,
we were able to present methods of constructing optimal entanglement witnesses and optimal
non-decomposable maps which provide very strong separability criteria [21]. In a series
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of important papers, Englert and his collaborators have obtained remarkable analytic results
concerning the BSA decompositions for 2× 2 systems [23]. These results give a new deep
insight into the fundamental problem of quantum correlations in two-qubit systems.

All of the above-mentioned applications indicate that the BSA method is very useful.
The aim of this paper is to generalize and to complete results of the [15]. We present several
results that characterize the BSA decompositions in 2× 2 and, in general inM × N systems.
Concerning the two-qubit systems our results are complementary to those of [23]. The plan of
the paper is as follows: In section 2 we remind the reader of some basic facts about the optimal
and the best separable approximations. In section 3 (using also the results presented in the
appendix) we demonstrate a necessary condition that for a two-qubit systems (M = N = 2)
the best separable approximation has the form of a mixture of a separable state and a projector
onto an entangled state which is notmaximally entangled. In section 4 we remind the reader
of the basic facts about entanglement measures; we prove here that the weight of the fully
entangled state in the BSA decomposition ofM × N states provides a legitimate entanglement
measure. In section 5 we prove that in general for arbitraryM and N the best separable
approximation corresponds to a mixture of separable and entangled states, both of which
areuniquely determined. Finally, in section 6 we formulate the theory of optimal separable
approximations for states with positive partial transpose (PPT states). Such approximations
allow to represent any density operator with positive partial transpose as a sum of a separable
state and an entangled PPT state. Decompositions of this sort play an essential role in the
theory of non-decomposable positive maps [21]. We present and discuss efficient numerical
procedures of construction of such decompositions.

2. Introduction to BSA

Consider a stateρ acting onCM ⊗ CN . Such a state will be called a PPT state if its
partial transpose satisfiesρTA � 0 (or equivalentlyρTB � 0). Throughout this paper
K(X),R(X), k(X), andr(X) denote the kernel, the range, the dimension of the kernel, and the
rank of the operatorX, respectively. By|e∗〉 we will denote the complex conjugated vector of
|e〉 in the basis|0〉A, |1〉A, . . . in which we perform the partial transposition in Alice’s space;
that is, if|e〉 = α|0〉 +β|1〉 + · · · then|e∗〉 = α∗|0〉 +β∗|1〉 + · · ·. Similar notation will be used
for vectors in Bob’ s space. By|ê〉 we denote a vector orthogonal to|e〉.

In this section we give a short repetition of what we call optimal and the best separability
approximations (OSA and BSA respectively). Although the results below have been proven
in [15], we repeat them here using the notation of the present work. The idea of BSA is that,
because of the fact that a set of separable states is compact, for any density matrixρ there exist
a ‘optimal’ separable matrixρ∗

s and ‘optimal’� � 0 such that�ρs can be subtracted fromρ
maintaining the positivity of the difference,ρ −�ρ∗

s � 0. This situation is characterized by
the following theorem:

Theorem 1. For any density matrix ρ (separable, or not) and for any (fixed) countable set V
of product vectors belonging to the range of ρ, i.e. |eα, fα〉 ∈ R(ρ), there exist �(V ) � 0 and
a separable matrix

ρ∗
s (V ) =

∑
α

�αPα (2)

where Pα = |eα, fα〉〈eα, fα|, while all �α � 0, such that δρ = ρ − �ρ∗
s � 0, and that

ρ∗
s (V ) provides the optimal separable approximation (OSA) to ρ since Tr(δρ) is minimal or,

equivalently,� is maximal. There exists also the best separable approximation ρ∗
s for which

� = maxV� (V ) . Obviously,�(V ) � �(V ′) when V ′ ⊂ V .
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Remark 1. Quite generally one can define the best separable approximationsρs of ρ by
demanding that‖ρ − ρs‖ is minimal with respect to some norm in the (Banach) space of
operators. Here we minimize Tr(ρ − λρs) with respect to allρs such thatρ − λρs � 0.

From this theorem it follows then that if any density matrixρ is separable, then� = 1.
Caratheodory’s theorem implies then (see discussion in [5]) that there exists a finite set of
product vectorsV ⊂ R(ρ) of cardinality� r(ρ)2 for which the optimal separable approximation
to ρ, ρ∗

s [V ], is equal to the BSA and� = 1 also. Theorem 1 and Caratheodory’s theorem are
also true for uncountable families of statesV, and appropriate generalizations are discussed in
[20, 21].

In order to explain now how the procedure of construction of the matrixρ∗
s actually works,

we introduce two important concepts:

Definition 1. A non-negativeparameter� is called maximal with respect to a (not necessarily
normalized) density matrix ρ, and the projection operator P = |ψ〉〈ψ| if ρ −�P � 0, and
for every ε � 0, the matrix ρ − (� + ε)P is not positive definite.

This means that� determines the maximal contribution ofP that can be subtracted from
ρ maintaining the non-negativity of the difference. Now we have the following important
lemma:

Lemma 1. � is maximal with respect to ρ and P = |ψ〉〈ψ|, if: (a) |ψ〉 �∈ R(ρ) then � = 0,
and (b) |ψ〉 ∈ R(ρ) then

0 � � = 1

〈ψ|ρ−1|ψ〉 . (3)

Note that in the case (b) the expression on the RHS of equation (3) makes sense, since
|ψ〉 ∈ R(ρ), and therefore there exists|φ〉 such that|ψ〉 =ρ|φ〉, or equivalently thatρ−1|ψ〉 =
|φ〉. Remarkably, this lemma has been used in a completely different context by Jaynes in his
works on the foundations of statistical mechanics [24].

Definition 2. A pair of non-negative (�1, �2) is called maximalwith respect to ρ and a pair
of projection operators P1 = |ψ1〉〈ψ1|, P2 = |ψ2〉〈ψ2|, if ρ − �1P1 − �2P2 � 0, �1 is
maximal with respect to ρ −�2P2 and to the projector P1,�2 is maximal with respect to ρ −
�1P1 and to the projector P2, and the sum �1 + �2 is maximal.

The condition for the maximality of�1 +�2 is given by the following lemma:

Lemma 2. A pair (�1,�2) is maximal with respect to ρ and a pair of projectors (P1, P2) if:

• (a) if |ψ1〉, |ψ2〉 do not belong to R(ρ) then �1 = �2 = 0;
• (b) if |ψ1〉 does not belong to R(ρ), while |ψ2〉 ∈ R(ρ) then�1 = 0,�2 = 〈ψ2|ρ−1|ψ2〉−1;
• (c) if |ψ1〉, |ψ2〉 ∈ R(ρ) and 〈ψ1|ρ−1|ψ2〉 = 0, then �i = 〈ψ i|ρ−1|ψ i〉, i = 1, 2;
• (d) if |ψ1〉, |ψ2〉 ∈ R(ρ) and 〈ψ1|ρ−1|ψ1〉, 〈ψ2|ρ−1|ψ2〉 � |〈ψ1|ρ−1|ψ2〉| �= 0 then

�1 = (〈
ψ2
∣∣ρ−1

∣∣ψ2
〉− ∣∣〈ψ1

∣∣ρ−1
∣∣ψ2

〉∣∣)/D (4)

�2 = (〈
ψ1
∣∣ρ−1

∣∣ψ1
〉− ∣∣〈ψ2

∣∣ρ−1
∣∣ψ1

〉∣∣)/D (5)

where D = 〈ψ1|ρ−1|ψ1〉〈ψ2|ρ−1|ψ2〉 − |〈ψ1|ρ−1|ψ2〉|2;
• (e) finally, if |ψ1〉, |ψ2〉 ∈ R(ρ) and 〈ψ1|ρ−1|ψ1〉 � |〈ψ1|ρ−1|ψ2〉| � 〈ψ2|ρ−1|ψ2〉, then
�1 = 〈ψ1|ρ−1|ψ1〉−1,�2 = 0.

Note that the Schwarz inequality implies thatD � 0. We are in the position now to present
the basic BSA theorem:
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Theorem 2. Given the set V of product vectors |eα, fα〉 ∈ R(ρ), the matrix ρ∗
s = ∑

α �αPα is
the optimal separable approximation (OSA) of ρ if:

• all �α are maximal with respect to ρα = ρ −∑
α′ �=α �α′Pα′ , and to the projector Pα;

• all pairs (�α, �β) are maximal with respect to ραβ = ρ −∑
α′ �=α,β �α′Pα′ , and to the

projection operators (Pα, Pβ).

If V is the set of all product vectors inR(ρ) (in general uncountable) then the same theorem
holds for the BSA (for the detailed proof see [15, 20, 21]). All information about entanglement
is included in the matrixδρ. If δρ does not vanish, i.e. ifρ is not separable, the rangeR(δρ)
cannot contain any product vector. The reason is that one can use projectors on product vectors
that belong toR(δρ) in order to increase�. The rank of the matrixδρ must be smaller, or
equal to (M − 1)(N − 1). This is because the set of all product vectors in the Hilbert spaceH
of dimensionM × N spans a (N + M − 1)-dimensional manifold, which generically has a non-
vanishing intersection with linear subspaces ofH of dimension larger than (N − 1) × (M − 1).
In fact, we have proven rigorously that this is the case for 2× N systems in [17], and presented
some rigorous arguments for the caseM × N in [18].

In particular, for the case ofM = N = 2, δρ is a simple projector onto an entangled state.
For two-qubit systems it is easy to prove that the BSA decomposition is unique and has the
form:

ρ = �ρs + (1 −�)Pe � ∈ [0,1] (6)

whereρs is the normalized density matrix. If it had not been so, we could have another BSA
expansion, sayρ = �ρ̃s + (1 − �)P̃e. But, taking the convex combination of these two
decompositions, we obtain another BSA decomposition with the remainderδρ being given
by a convex combination ofPe andP̃e. Such a remainder would have then rank 2, and would
necessarily contain product vectors in its range [16]. If this happened, we would be then able
to increase the BSA parameter� by subtracting fromδρ projectors on product vectors in its
range. That is, however, impossible since� is already maximal. For the case of arbitrary
dimensions the OSA and BSA decompositions are also unique. We present the proof of this
fact in section 5 of this paper.

3. The BSA reminder in C2 ⊗ C2 quantum systems: is it maximally entangled?

We have seen that the BSA reminder inC2 ⊗ C2 quantum systems is just given by a projector
onto an entangled state|ψe〉. This fact is essential and allows to obtain the BSA decomposition
for some states analytically [23]. For many families of states considered by Englert and his
collaborators, the BSA remainder consists of a maximally entangled state. Similar conclusions
follow from the numerical analysis of [15]. In this section we ask therefore a natural question:
under which conditions is, or is not, the BSA remainder maximally entangled? Strictly
speaking we present here a necessary condition, that the BSA decomposition for a generic
density matrix must fulfil, so that the BSA remainder is not maximally entangled.

We concentrate here on generic quantum states which have the maximal dimension of
the range(r(ρ) = r(ρTA) = 4). Let us assume that the density matrixρ has the BSA
decomposition

ρ = �ρs + (1 −�)Pψe (7)

so that its partial transposition with respect to Alice’s system isρTA = �ρ
TA
s + (1 − �)P

TA
ψe
.

When� is not equal to 1,ρ is entangled, andρTA must not be positive definite.
Let us first observe:



6924 S Karnas and M Lewenstein

Lemma 3. If ρ acting in C2 ⊗ C2 has the BSA decomposition ρ = �ρs + (1 − �)Pψe , then

r(ρ
TA
s ) � 3.

Proof. Had the range ofρTAs been full, one could always replace 1− � by (1 − � − ε),
keeping�ρTAs + εPTA

ψ− positive definite, whileρ′
s = ρs + εPψ− separable. �

The fact that the rank ofρTA is not full implies that∃|v〉, such thatρTA |v〉 = 0. Since
PψTA has three positive eigenvalues and one negative eigenvalue [16], where the eigenvector
corresponding to a negative eigenvalue in a conveniently chosen basis can be written as


0
1

−1
0


 = |ν−〉

then〈v|ψ−〉 �= 0. If it was not the case, one could also replace 1−� by (1−�− ε), keeping
�
TA
ρs + εPTA

ψ− positive.
Let us now discuss the optimization procedure, that sometimes allow to increase� in

the decomposition (7). A given decomposition of such a form is optimal if it cannot be
optimized. It will turn out that the optimization strategy works only providedψe is not
maximally entangled. The necessary condition, that the BSA remainder is not maximally
entangled, is that the decomposition cannot be optimized in the sense formulated below. Our
aim is to formulate this necessary condition in an explicit form in this section.

Optimization procedure. Let us observe that we can always write

|ψe〉 = N1|e1, f1〉 +N2|e2, f2〉
for any basis|e1〉, |e2〉, where〈e1|e1〉 = 〈e2|e2〉 = 1, but〈e1|e2〉 does not have to be zero. Let
|ê1〉, |ê2〉 denote the basis bi-orthogonal to|e1〉, |e2〉; we obtain then

〈ê1|ψe〉 = N2〈ê1|e2〉|f2〉
〈ê2|ψe〉 = N1〈ê2|e1〉|f1〉.

Requiring that〈f1|f2〉 = 〈f2|f2〉 = 1, the above equations allow to determine uniquelyN1,
N2, |f1〉 and|f2〉. Without losing generality, we may assumeN1 � N2. Let us introduce

|ψe(α)〉 = 1

N(α)

(
αN1|e1, f1〉 +

1

α
N2|e2, f2〉

)
where

N(α)2 = α2N2
1 +

1

α2
N2

2 + 2N1N2Re(〈e1|e2〉〈f1|f2〉).
We can now rewrite the BSA projector

Pψe = N(α)2Pψe(α) + (1 − α2)Pe1f1 +

(
1 − 1

α2

)
Pe2f2. (8)

We would like to replace the projectorPψe by the expression (8), and in this way improve
the BSA decomposition. To this aim we require thatN(α)2 � 1 which implies that
α2N2

1 + 1
α2N

2
2 � N2

1 + N2
2 . Defining nowx ≡ N2

2/N
2
1 , we see thatN(α)2 < 1 provided

x < α2 < 1. That is only possible ifN1 �= N2. The latter conditions can be fulfilled ifψe is
not maximally entangled, as described in the following lemma:

Lemma 4. Iff |ψe〉 = N1|e1, f1〉 +N2|e2, f2〉, where 〈e1|e1〉 = 〈e2|e2〉 = 1, then N1 = N2 if
ψe is maximally entangled.
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Proof. Let us consider a basis in which|ψe〉 = a|00〉 +
√

1 − a2|11〉, and assume a general
form of

|ê1〉 =
( √

p√
1 − peiϕ

)
|ê2〉 =

( √
p′√

1 − p′eiϕ′

)
.

In the basis considered we can easily calculate that

〈ê1|ψe〉 = a
√
p|0〉 +

√
1 − a2

√
1 − p|1〉e−iϕ (9)

〈ê2|ψe〉 = a
√
p′|0〉 +

√
1 − a2

√
1 − p′|1〉e−iϕ′

(10)

so that

N2
2 |〈ê1|e2〉|2 = a2p + (1 − a2)(1 − p) (11)

N2
1 |〈ê2|e1〉|2 = a2p′ + (1 − a2)(1 − p′). (12)

Note that|〈ê1|e2〉|2 = |〈ê2|e1〉|2, so that indeedN2
1 = N2

2 , if a2 = 1
2, that is when the state

|ψe〉 is maximally entangled. �
Now we can easily prove:

Lemma 5. If ρ has the BSA decomposition (7), then either ψe is maximally entangled, or
r(ρs) = 3.

Proof. Suppose thatr(ρs) = 4. If ψe is not maximally entangled, the optimization procedure
allows to optimize the decomposition by takingα2 < 1, but very close to 1. We can indeed

improve BSA forρ, provided we can subtract1−α2

α2 Pe∗2f2from�ρ
TA
s . This means that|e∗2, f2〉

must belong to the rangeR(ρTAs ). That in turn requires that if|v〉 = |ê∗1, h1〉 + |ê∗2, h2〉, we
then need〈h1|f2〉 = 0 , or in other words

〈v|e∗2〉〈ê1|ψe〉 = 0. (13)

It is easy to see that this equation has many solutions: for example, take|e2〉 = |ê1〉 and|ê1〉
proportional to

(
1
α

)
= |0〉 +α|1〉, then the above equation implies that [〈v|0〉 +α∗〈v|1〉]

[〈0|ψe〉 +α∗〈1|ψe〉] = 0, which is a quadratic equation forα∗ which obviously has solutions
for |e2〉 �= |ê1〉. We conclude that eitherr(ρs) = 3, or N1 = N2. The latter can occur if and
only if |ψe〉 is fully entangled. �

Therefore we have to consider the caser(ρs) = r(ρ
tA
s ) = 3. From the results presented in

appendix A we know that there exists such a one-dimensional family of product states|e2(δ),

f2(δ)〉, whereδ is real, such that|e2(δ), f2(δ)〉 ∈ R(ρs) and|e∗2(δ), f2(δ)〉 ∈ R
(
ρ
TA
s

)
is satisfied.

Now we are in the situation where we can explicitly check whether the vector|ψe〉 in the
BSA remainder can be non-maximally entangled. If|ψe〉 is given and we have|e2, f2〉 = |e(δ),
f (δ)〉 for a givenρs, then we can calculate|f1〉 and|e1〉 by

|f1〉 = 〈ê2|ψe〉
|〈ê2|ψe〉| (14)

|e1〉 = 〈f̂ 2|ψe〉
|〈f̂ 2|ψe〉|

(15)

and from〈f1|f1〉 = 1 , we obtain|N1| = |〈ê2|ψe〉|
|〈ê2|e1〉| . Since we know now|e1〉, |f1〉, we can also

easily calculate|N2| = |〈ê1|ψe〉|
|〈ê1|e2〉| .

We see that the coefficientN1 andN2 can be explicitly constructed fromρs and|ψe〉. We
obtain therefore the main result of this section:
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Theorem 3. If a generic (r(ρ) = r(ρTA) = 4) state ρ in C2 ⊗ C2 has the BSA decomposition
ρ = �ρs + (1 − �)Pψe , then either ψe is maximally entangled, or r(ρs) = r(ρ

TA
s ) = 3,

and for any expansion of |ψe〉 = N1|e1, f1〉 + N1|e2, f2〉, such that |e2, f2〉 ∈ R(ρs) and
|e∗2, f2〉 ∈ R(ρ

TA
s ) holds, it must follow that N1 < N2.

Proof. The proof is obvious using the lemmas of this section, and the optimization procedure.
If there exist|e2(δ), f2(δ)〉 such thatN1 > N2, the optimization procedure can be applied,
which contradicts the optimality of the BSA. �

4. Entanglement measures

Before we turn to the main results of this paper let us also remind the reader in this section of
some basic facts about entanglement measures and their properties.

Once one has the physical picture of entanglement as a resource, one needs to
formulate this concept mathematically. One way leads through a definition of non-entangled,
i.e. separable, states as discussed in previous sections. Another possibility is to try to quantify
the amount of entanglement for a given mixed state. The latter approach is realized by defining
entanglement measures [25], and by specifying physical properties which the entanglement
measure should have. There are several versions of definitions of the entanglement measures;
here we follow the approach of Plenio and Verdal [26]:

Definition 3. Let ρ be a quantum state acting in a Hilbert space HAB = HA ⊗ HB, then the
function E(ρ) �→ R is called an entanglement measureif it satisfies:

1. E(ρ) = 0, if ρ is separable
2. Local unitary operations leave E(ρ) invariant, i.e.E(ρ) = E(UA ⊗ UBρU

†
A ⊗ U

†
B);

3. Let
∑

i AiA
†
i ⊗ BiB

†
i = 1 be some complete local measurement (i.e. local positive

operator-valued map (POVM)), then

E(ρ) �
∑
i

Tr(ρi)E(ρi/Tr(ρi)) (16)

where ρi := Ai ⊗ BiρA
†
i ⊗ B

†
i . This property means that entanglement measure cannot

increase in the mean under local operations.
4. For pure states the measure of entanglement should reduce to the entropy of entanglement,

which is defined as the von Neumann entropy of the reduced density matrix, ρA = TrBρ
(or, alternatively, ρB = TrAρ)

E(ρ) := −Tr(ρA lnρA); (17)

5. The entanglement measure should be additive which means that

E(ρ1 ⊗ ρ2) = E(ρ1) +E(ρ2). (18)

It should be pointed out that the necessity of the last two conditions is still disputed in the
literature [27, 28], and therefore we will just concentrate on the first three conditions. Notice,
that in equation (3) it may happen thatE(ρi/tr(ρi)) � E(ρ).

To complete this section, let us list some of the most widely used entanglement measures.
Typically, they fulfil some, but not all, of conditions 1–5 of definition 3.

1. Entanglement of formation [25] is defined as

EF := min
∑
i

piS
(
ρiA
)

(19)
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where S(ρA) := −Tr(ρA ln ρA) is the von Neumann entropy and the minimum is
taken over all the possible realizations of the state,ρ = ∑

i |ψi〉〈ψi |, whereρiA =
TrB(|ψi〉〈ψi |). Notice that in the case whereρ is a pure state (ρ = |ψ〉〈ψ|), the von
Neumann entropy of the reduced density matrix is an entanglement measure. The physical
meaning of the formation measure is the minimal amount of pure state entanglement
needed to create the given entangled state. Calculation ofEF for a given state is a very
difficult task. Remarkably, Wootters has derived the analytic formula forEF for an
arbitrary two-qubit state [29].

2. Relative entropy entanglement measure [26] is defined as

E(ρ) := min
ρs

E(ρ‖ρs) (20)

where the minimum is taken over all separable statesρs andE(ρ‖ρs) is the relative
entropy, which is given by the expression

E(ρ‖ρs) := Tr(ρ(lnρ − lnρs)). (21)

3. Bures entanglement measure [25] is defined as

E(ρ) := min
ρs
(2 − 2

√
F(ρ, ρs)) (22)

whereF(ρ, ρs) is Uhlmann’s fidelityF(ρ, ρs) := (Tr(
√√

ρρs
√
ρ))2. This entanglement

measure does not fulfil the last two conditions of definition 3.

In recent years a very promising approach has been initiated by Vidal who has shown that
more parameters (the so-called entanglement monotones) are required in order to quantify
completely the non-local character of bipartite pure states [28].

5. The BSA entanglement measure

Let us now investigate how the local POVM’s influence a given BSA decomposition. To this
aim we consider a POVM of the form of

∑
i ViV

†
i = 1, Vi = Ai ⊗ Bi . After theith result is

obtained in the measurement we obtain the following density matrix:

ρi := ViρV
†
i

Tr(ViρV
†
i )

= �
Tr(ViρsV

†
i )

Tr(ViρV
†
i )

∑
α

�αTr(ViPαV
†
i )

Tr(ViρsV
†
i )

ViPαV
†
i

Tr(ViPαV
†
i )

+ (1 −�)

(
Tr(ViδρV

†
i )

Tr(ViρV
†
i )

)(
ViδρV

†
i

Tr(ViδρV
†
i )

)
.

Defining now

�i := �
Tr(ViρsV

†
i )

Tr(ViρV
†
i )

�iα := �α

Tr(ViPαV
†
i )

Tr(ViρsV
†
i )

Piα := ViPαV
†
i

Tr(ViPαV
†
i )

δρi := ViδρV
†
i

Tr(ViδρV
†
i )
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we rewrite the result as

ViρV
†
i → ρi = �i

∑
α

�iαPiα + (1 −�i)δρi.

We observe that

1 −� =
∑
i

(1 −�iTr(ViρV
†
i )) (23)

holds. Since for the BSA decomposition ofρi the inequality

�BSAi � �i (24)

holds, we get from (23) that

1 −� �
∑
i

(1 −�BSAiTr(ViρV
†
i )). (25)

The result (25) allows to prove the following property:

Property 1. The BSA entanglement measure

E(ρ) = 1 −�BSA(ρ)

fulfils the properties 1–3 of definition 3.

Proof.

1. If ρ is separable, i.e.ρ = ρs, then� = 1, andE(ρ) = 1 − � = 0.

2. If ρ̃ = UA ⊗UBρU
†
A ⊗U

†
B then obviouslyE(ρ̃) � 1−� = E(ρ), andvice versa, since

we can invertUA ⊗ UB . That means thatE(ρ) is invariant with respect to local unitary
transformations.

3. Finally, if we apply a local POVM, we obtain

E(ρ) = 1 −� �
∑
i

(1 −�BSAiTr(ViρV
†
i ))

�
∑
i

E(ρi)Tr(ViρV
†
i )

whereρi = ViρV
†
i /Tr(ViρV

†
i ). This follows from (25). �

It is worth noticing that the above argument holds for the Hilbert spacesHA ⊗ HB of
arbitrary dimensions.

6. The uniqueness of the BSA

In this section we turn back to the general case and present a proof that the BSA in any Hilbert
space is unique. To this aim we prove first a lemma, and then the major result.

Lemma 6. Let a Hermitian density matrix ρ have a decomposition of the form ρ =
�ρs +(1−�)δρ,where ρs is the separable part which has the structure ρs = �

∑n
α=1�αPα,

with Pα being the projection operators onto the product states |eα, fα〉 and
∑n

α=1�α = 1.
Then the set of {�α}, which are maximal with respect to the density matrix ρ and the set of
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the projection operators {Pα}, form a manifold which generically has a dimension n− 1 and
is determined by the following equation:

1 −
n∑
i

�iDi +
n∑
i<j

�i�jDij −
n∑

i<j<k

�i�j�kDijk + · · ·

+ (−1)m
∑

i1<i2<···<im
�i1�i2 · · ·�imDi1i2···im + · · ·

+ (−1)n�1�2 · · ·�nD12···n = 0 (26)

where the set of {Di1i2···im} are the subdeterminants (minors) of the matrixD, which is defined
as

D =




〈ψ1|ρ−1|ψ1〉 〈ψ1|ρ−1|ψ2〉 · · · 〈ψ1|ρ−1|ψn〉
〈ψ2|ρ−1|ψ1〉 〈ψ2|ρ−1|ψ2〉 · · · 〈ψ2|ρ−1|ψn〉

...
...

. . .
...

〈ψn|ρ−1|ψ1〉 〈ψ1|ρ−1|ψ2〉 · · · 〈ψn|ρ−1|ψn〉




and where by {|ψ i〉} we denote for shortness the product vectors which are building the
projection operators Pi ≡ |ψi〉〈ψi |.

Proof. Let us first remark that generically the matrixD does not have a block structure. If the
matrix D consistsk diagonalnk-dimensional blocks, then not only is equation (26) fulfilled,
but also thek corresponding equations for the blocks, so that the corresponding manifold has
the dimensionnk, and is a Cartesian product ofk manifolds of dimensionnk − 1. In the
following we will concentrate on the generic case.

The proof of the lemma goes with induction. First we prove it forn = 2 and we get

1 −�1D1 −�2D2 +�1�2D12 = 0

or for n = 3 where we get

1 −�1D1 −�2D2 −�3D3 +�1�2D12 +�1�3D13 + +�2�3D23 −�1�2�3D123 = 0.

Now, let us assume that the lemma is true forn, and show that it must also be true forn + 1.
Let ρ have the decompositionρ = �ρs + (1 − �)δρ, with

ρs = �

n+1∑
α=1

�αPα.

The lemma holds for the matrix ˜ρ = ρ − �n+1|ψn+1〉〈ψn+1| so that the firstn coefficients
�α fulfil equation (26) with coefficientsD calculated as above with the substitution
ρ−1 → ρ̃−1 = (ρ − �n+1|ψn+1〉〈ψn+1|)−1. The latter inverse can be calculated using a
power series expansion in the projector�n+1|ψn+1〉〈ψn+1|. The result is

(ρ −�n+1|ψn+1〉〈ψn+1|)−1|ψi〉 = ρ−1|ψi〉
+
�n+1〈ψn+1|ρ−1|ψi〉〈ψi |ρ−1|ψn+1〉

1 −�n+1〈ψn+1|ρ−1|ψn+1〉 ρ−1|ψn+1〉.

Inserting the above result into equations defining the surface for the firstn �’s we get, after
tedious, but elementary algebraic calculation
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1 −
n∑
i

�iDi +
n∑
i<j

�i�jDij −
n∑

i<j<k

�i�j�kDijk + · · ·

+ (−1)m
∑

i1<i2<···<im
�i1�i2 · · ·�imDi1i2···im + · · ·

+ (−1)n
∑

i1<i2<···<in
�i1�i2 · · ·�inDi1i2···in

+ (−1)n+1�1�2 · · ·�n+1D12···n+1 = 0

which proves the lemma forn + 1. �
Note that, in particular, if the decomposition discussed in the above lemma is the BSA,

then the corresponding�’s fulfil equation (26). This observation allows us to prove the
uniqueness of the BSA in arbitrary dimensions. It is important to note that the surface defined
by equation (26) can be considered for arbitrary�’s, not necessarily positive! This surface is
strictly convex and divides the space of all�’s into two sets: a convex set of those sets of{�’s}
which have the property thatρ − �

∑n+1
α=1�αPα is positive definite, and a concave set for

which the latter matrix is not positive definite. If this surface contains a part of a hyperplane
(linear subspace), it must contain the whole hyperplane, since it is defined by the polynomial
equation (26). This observation is essential to prove the uniqueness of the expansion.

Lemma 7 (The uniqueness of the BSA). Any density matrix ρ has a unique decomposition
ρ = �ρs + (1−�)δρ, where ρs is a separable density matrix, δρ is a inseparable matrix with
no product vectors in its range, and � is maximal.

Proof. The proof the lemma goes by assuming the decomposition is not unique; then there
must exist at least two BSA decompositions,ρ = �ρs1 + (1 − �)δρ1 and ρ = �ρs2
+ (1 − �)δρ2, with the same maximal�. Now, any convex combination of these two
BSA decompositions is also a BSA decomposition,

ρ = ερs1 − (1 − ε)ρs2 + εδρ1 + (1 − ε)δρ2

=
∑
i

(ε��1i − (1 − ε)��2i )Pi + (εδρ1 − (1 − ε)δρ2)

≡ ρs(ε) + δρ(ε)

whereε ∈ [0, 1]. The part of the one-dimensional hyper plane (line)ε�1i − (1 − ε)�2i for
ε ∈ [0, 1] lies on the surface (26).

From the form of the surface it follows that the whole lineε�1i − (1 − ε)�2i for all ε lies
on that surface. This cannot be, since for someε �∈ [0, 1], andδρ1 �= δρ2, δρ(ε) must become
non-positive definite. This is easy to see since forε → ±∞, δρ(ε) ∝ δρ1 − δρ2, and the
latter matrix is non-zero and has the trace zero, so that it has to have eigenvalues of opposite
signs. This is thus a contradiction with the assumption made at the beginning,ergo the BSA
decomposition must be unique. �

7. The PPT BSA

In this section we discuss in detail the generalization of the BSA approach for PPT states used
in [17, 18].

Theorem 4. Let ρ be an arbitrary PPT state. For any countable set V = {Pi = |ei, fi〉〈ei ,
fi |}, such that |ei, fi〉 ∈ R(ρ) and |e∗i , fi〉 ∈ R(ρTA), there exists the best separable



Separable approximations of density matrices of composite quantum systems 6931

approximation of ρ in the form

ρ = �ρs + (1 −�)δρ (27)

where ρs = ∑
i �iPi is a separable state,� is maximal, and both δρ � 0, and δρTA � 0. We

call such a decomposition a PPT BSA if it preserves the PPT of the remainder δρ and

�PPT ≡ maxV(Tr(ρs [V ])). (28)

Proof. Let us consider the set of all separable matricesρs = ∑
i λi |ei, fi 〉〈ei , fi |, where

|ei, fi〉 ∈ V, ρ − ρs � 0 andρTA − ρ
TA
s � 0. This set ofρ’s form a convex and bounded set,

which means that this set is compact. Because of the compactness there must exist a separable
matrixρs which has maximal trace� = Tr(ρ2[V ]). By expandingV we will finally get the
maximal PPT contribution. �

Let us analyze the PPT BSA decomposition in more detail. All information about the PPT
entanglement is included in the PPT BSA parameter� andδρ. If the PPT BSA remainder
δρ does not vanish, then there exists no product vector|e, f 〉, such that|e, f 〉 ∈ R(δρ) and
simultaneously|e∗, f 〉 ∈ R(δρTA) is satisfied. This means that the PPT stateδρ is entangled.

We introduce now, just like in the first version of the BSA, a procedure for constructing
the matrixρs. But before we do this let us define some basic concepts for that:

Definition 4. A non-negative parameter � is called PPT maximalwith respect to a positive
PPT operator ρ, and a projection operator P = |ψ〉〈ψ| ∈ V if ρ−�P � 0, ρTA −�ρTA � 0,
and for every ε � 0, the matrix ρ − (� + ε)P is not a PPT state.

This means that� is the maximal contribution ofP that can be subtracted fromρ by
maintaining the PPT of the difference. Now let us introduce the following lemma:

Lemma 8. � is PPT maximal with respect to ρ and P = | e, f 〉〈 e, f | iff:

• if |e, f 〉 �∈ R(ρ) and |e∗, f 〉 �∈ R(ρTA), or |e, f 〉 �∈ R(ρ) and |e∗, f 〉 ∈ R(ρTA) or
|e, f 〉 ∈ R(ρ) and|e∗, f 〉 �∈ R(ρTA) then� = 0;

• if |e, f 〉 ∈ R(ρ) and|e∗, f 〉 ∈ R(ρTA) then

� = min

((
〈e, f | 1

ρ
|e, f 〉

)−1

,

(
〈e∗, f | 1

ρTA
|e∗, f 〉

)−1)
. (29)

Proof. From lemma (1) we know that� =
(
〈e, f | 1

ρ
|e, f 〉

)−1
is the maximal contribution to

ρ and�̃ =
(
〈e∗, f | 1

ρTA
|e∗, f 〉

)−1
is the maximal contribution toρTA . In order to maximize

and keep the PPT of the difference we have to take the minimum of� and�̃. �
Definition 5. A pair of non-negative (�1, �2) is called maximalwith respect to ρ and a pair
of projection operators P1 = |e1, f1〉〈e1, f1| and P2 = |e2, f2〉〈e2, f2| iff

• ρ −�1P1 −�2P2 � 0 and (ρ −�1P1 −�2P2)
tA � 0,

• �1 is PPT maximal with respect to ρ − �2P2,
• �2 is PPT maximal with respect to ρ − �1P1, and
• �1 + �2 is maximal.

The conditions for PPT maximizing of pairsP1 = |e1, f1〉〈e1, f1| andP2 = |e2, f2〉〈e2, f2|
are described in appendix B.

Let us now prove that for a given countable setV of product vectors we can obtain the
optimal PPT separable approximation by maximizing all pairs of product vectors inV. But
before we do this, we have to define the PPT BSA manifold:
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Definition 6. Let the equation F(λ1, . . . , λK) = 0 (or λ1 = f1(λ2, . . . , λk)) describe the
BSA manifold with respect to ρ, and F̃ (�1, . . . , λK) = 0 (or λ1 = f̃ 1(λ2, . . . ,�k)) for
ρTA. Without losing generality in order to obtain the manifold which preserves the PPT of the
difference (ρ − ρs) we have to define

λ1 = min(λ1 = f1(λ2, . . . , λK), λ1 = f̃ 1(λ2, . . . , λK)

≡ f̃ 1(λ2, . . . , λK). (30)

The implicit form will then be given by F̄ (λ1, . . . , λK) = 0.

Notice that the PPT BSA manifold is continuous and almost everywhere differentiable.

Theorem 5. Given the set V of product vectors |ei, fi〉 ∈ R(ρ) where also |e∗i , fi〉 ∈ R(ρTA),

then the matrix ρ̃s = ∑
i=1�iPi is the optimal PPT separable approximation of ρ if:

• all �i are PPT maximal with respect to ρi = ρ −∑
i′ �=i �i′Pi′ , and to the projector Pi;

• all pairs (�i,�j ) are PPT maximal with respect to ρij = ρ −∑
i′ �=i,j �i′Pi′ , and to the

projectors (Pi, Pj ).

Proof. If ρ̃s is a PPT BSA decomposition then all�i, as well as all pairs (�i, �j) must be
PPT maximal (otherwise maximizing�i would increase the trace of ˜ρs).

To prove the inverse, consider matricesρs = ∑
i λiPi for which all individualλi are PPT

maximal. This means thatρs belongs to the boundary of the setZ of all separable matrices
such thatρ − ρs � 0 and(ρ − ρs)

tA � 0. This boundary is the PPT BSA manifold:

F̄ (λ1, . . . , λK) = 0. (31)

The manifold (31) can be written as a functionλi = fi({λj }j �=i ), depending on which side of
the manifold we are. Letρms = ∑

i �iPi be the separable matrix for which all pairs of�’s
are PPT maximal. The maximum of (�i, �j) then implies that

∂

∂λi
(λi + fj )|λ=� = ∂

∂λi

(∑
i′ �=j

λi′ + fj

)∣∣∣∣∣
λ=�

� 0 (32)

for all sides of the manifold̄F = 0 andi, j. This means thatρms is either a local maximum or
a saddle point (not necessarily the same derivative in every direction ofλ=�). Now we have
the same situation just like in the original version of the BSA. The latter possibility cannot
occur, since the setZ is convex (i.e. if ρs, ρ′

s ∈ Z thenερs + (1− ε)ρ′
s ∈ Z for every 0� ε � 1).

Since (32) also describes a convex set it can for sure not be a saddle point. The same argument
holds also for the local minimum. And finally the local maximum must be also a global one,
because on a convex set there cannot exist two of them. This means that ˜ρs = ρms . �

At the end of this section we would like to stress that the PPT BSA can be straightforwardly
generalized to multicomposite systems.

8. Conclusion

In this paper we have presented several novel results concerning the BSA decompositions
of density matrices of composite quantum systems. General results concern the uniqueness
of the BSA decompositions, the existence of the BSA entanglement mass, and efficient
methods of construction of the BSA decomposition for PPT states. More specific results for
two-qubit systems deal with the necessary condition that the projector onto a nonmaximally
entangled state provides the remainder in the BSA decomposition. There are several open
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questions concerning the BSA decompositions in higher-dimensional iHlbert spaces: what
is the structure of the remainder in such a case; how to parametrize the remainders (the
so-called edge states [21] in the case of PPT BSA)? The physical interpretation of the BSA
entanglement mass is not known so far. In the case of 2× 2 space, we hope that our results,
together with remarkable analytic results of Englert and his colleagues [23], will bring us
closer to the challenging goal of analytic construction of the BSA decomposition for the
arbitrary two-quibit density matrix.

After our completion of this paper, Wellens and Kuś [30] have been able to construct
analytically the BSA for generic states in the 2× 2 case, and to relate the BSA entanglement
measure to the so-called Wootters concurrence [11].
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Appendix A. Product vectors in the range

In this appendix we prove some lemmas that have been used in section 4. Both the results as
well as the proofs are very much parallel to that used by Woronowicz [11].

Lemma 9. If ρ is a density matrix in a 2 × 2 space having a positive partial transpose
and r(ρ) = r(ρTA) = 3, then there exists a product vector |e, f 〉 ∈ R(ρ) such that
|e∗, f 〉 ∈ R(ρTA).

Proof. Let there be given a density matrixρ =
(
A
B†

B
C

)
(A and C are invertible, because

otherwise we would have product vectors in the kernel [17], and the existence of|e, f 〉 would
follow from the results of [17]). Now, we choose the basis inHA to be{

1√
1 + |α|2

(
1

α

)
,

1√
1 + |α|2

(−α∗

1

)}
.

In this new basis we obtain that

B(α∗) = 1√
1 +‖α‖2

(1 − α∗)
(
A B

B† C

)(
1

α∗

)

is a function ofα∗ only. This means that we can chooseα such that detB(α∗) = detB(α) = 0.
Choosing such anα, we getr (B) = r (B∗) = 1.

The next step is to perform a non-unitary, but invertible local transformationρ →
IA ⊗ 1√

C
ρIA ⊗ 1√

C
, and redefineA → 1√

C
A 1√

C
,B → 1√

C
B 1√

C
. After that, the new matrix

is given byρ =
(
A
B†

B
I

)
. Now, we use our assumption thatr (ρ) = 3, from which it follows

thatA = BB† + λP , whereP is a projector on some vector|ψ〉. The assumption that also
(rρTA) = 3, leads us toA = B†B + λ̃P̃ , whereP̃ is a projector on some other vector|ψ̃〉.
This leads us toBB† + λP = B†B + λ̃P̃ , and since tr(BB† − B†B) = 0, we get thatλ = λ̃.

What is the necessary condition now for
( |f 〉
z|f 〉

)
∈ r(ρ) and

( |f 〉
z∗|f 〉

)
∈ r(ρTA)? This condition



6934 S Karnas and M Lewenstein

means nothing else than that there exist two vectors, say
( |h〉

|g〉
)

and
( |h̃〉

|g̃〉
)
, such that(

BB† + λP B

B† I

)(|h〉
|g〉
)

=
( |f 〉
z|f 〉

)
(A1)

(
B†B + λP̃ B†

B I

)(|h̃〉
|g̃〉
)

=
( |f 〉
z∗|f 〉

)
(A2)

from which we get the equation

1

1 − zB
|ψ〉 = η

1

1 − z∗B† |ψ̃〉 (A3)

with some complexη. In order to prove our lemma we must show that there exists a solution
for (A3). The trick is now to describe the right-hand side of equation (A3) as a complex
conjugate of the left-hand side, so that we can construct a solution explicitly.

We will show now that equation (A3) can indeed be transformed into the form

1

1 − zB
|ψ〉 = σxη

1

1 − z∗B∗ |ψ∗〉 (A4)

whereσx is the Pauli matrix. Defining 1
1−zB |ψ〉 =

(
v1
v2

)
, we must have thatv1 = ηeiφv∗

2

and v2 = ηeiφv∗
1. This equation has a solution ifv1 = veiθ and v2 = veiθ+δ, where

‖v1‖ = ‖v2‖ = v. Let us take now an arbitraryδ and require
(

1
eiδ

)
∼ 1

1−zB |ψ〉, which means

that

(eiδ,−1)
1

1 − zB
|ψ〉 = 0 (A5)

must hold. Obviously, this equation has not only one solution, but an infinite family of
solutions for everyδ.

Let us now prove that equation (A4) indeed holds. First we choose a basis|ψ1〉, |ψ2〉
such thatB†B − BB† = (

�
0

0
−�
)
. Therefore we have thatλ(P − P̃ ) = (

�
0

0
−�
)
. Since the

overall phases of|ψ〉 and|ψ̃〉 are irrelevant, we parameterize|ψ〉 and|ψ̃〉 in our new basis as

|ψ〉 =
( √

p√
1 − peiφ

)
|ψ̃〉 =

(√
1 − p̃√
p̃eiφ̃

)
.

This parameterization yields ˜p = p, φ̃ = φ and� = λ(1 − 2p). We observe now that for
r(B) = 1, there exists always a unitaryK such thatKBK† = BT . From this it trivially
follows, of course, that(K†)T BT KT = B, and therefore(K†)T KBK†KT = B, from which
thenBU = UB, whereU = K†KT .1

Now we will prove thatK = eiϕ0
(
0
1

1
0

)
.

Let M = BB† − B†B = λ(P̃ − P) (note thatM = M∗ in our basis). Then we have
KMK† = BT B∗ − B∗B† = B∗(BT )∗ − (B†)∗B∗ = −M∗ = −M. ThereforeM =
λ(K|ψ〉〈ψ|K† −K|ψ̃〉〈ψK†), and for the vectors|ψ〉, |ψ̃〉 we get

K|ψ〉 =
(

eiϕ1
√

1 − p

eiϕ1
√
peiφ

)

K|ψ̃〉 =
(

eiϕ2
√
p

eiϕ2
√

1 − peiφ

)
.

1 In general, there exists alwaysK, such thatKBK∗ = BT. The existence of suchK is sufficient to prove lemma 9
without the assumptionr(B) = 1.
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This impliesK =
(

0
eiθ2

eiθ1
0

)
and thereforeθ2 = ϕ1 + φ, θ1 + φ = ϕ1, ϕ2 = θ1 + φ and

ϕ2 + φ = θ2. But, if θ1 �= θ2 thenU =
(

ei(θ1−θ2)
0

0
ei(θ1−θ2)

)
. U will commute withB, if B is

diagonal in the chosen basis. But thenBB† − B†B = 0, from which follows that|ψ〉 ∼ |ψ̃〉,
and thus

(
ψ
0

)
in the range ofρ which proves the lemma. This means thatθ1 = θ2, and

K = eiϕ0σx. Since the overall phases ofK are irrelevant, we can assume thatK = σx. This
proves, however, (A4) which consequently proves the lemma too.

The reader may think now that we have finished the proof of the lemma, but remember
that at the beginning of the proof we have made a non-unitary local operation. What we must
do now is to transform back the density matrixρ, and check if our results still hold. Let us see
what happens after the inverse transformation:

ρ =
(√

CBB†√C + λ
√
CP

√
C

√
CB

√
C√

CB†√C C

)
.

Demanding that
( |f 〉
z|f 〉

)
∈ R(ρ) and

( |f 〉
z∗|f 〉

)
∈ R(ρTA) leads to the following conditions:

1

1 − √
CB 1√

C
z

√
C|ψ〉 = η

1

1 − √
CB† 1√

C
z∗

√
C|ψ̃〉

√
C(1 − f (z)B)|ψ〉 =

√
Cη(1 − f ∗(z)B†)|ψ̃〉

(1 − f (z)B)|ψ〉 = η(1 − f ∗(z)B†)σx |ψ〉.
We see that the equations are equivalent after the rescaling, so that the lemma holds.�

The proof of the above lemma allows to parameterize the set of all product vectors

|e(δ), f (δ)〉, which satisfy the condition|e(δ), f (δ)〉 ∈ R(ρs) and|e(δ)∗, f (δ)〉 ∈ R
(
ρ
TA
s

)
,

by a one-dimensional real parameterδ. This will be used in section 3.

Appendix B. PPT pair maximizing

In this appendix we explain how to PPT maximize a pair of product projectors|ψ1〉〈ψ1| =
|e1, f1〉〈e1, f1|, |ψ2〉〈ψ2| = |e1, f1〉〈e1, f1|).

As we know from the BSA, the BSA manifold forρ and (|ψ1〉〈ψ1| = |e1, f1〉〈e1, f1|,
|ψ2〉〈ψ2| = |e1, f1〉〈e1, f1|) is given by

F(�1,�2) ≡ 1 −�1D
0
1 −�2D

0
2 −�1�2D

0 = 0 (B1)

where

D0
1 =

〈
e1, f1|ρ−1|e1, f1

〉
D0

2 =
〈
e2, f2|ρ−1|e2, f2

〉
and

D0 =
〈
e1, f1|ρ−1|e1, f1

〉 〈
e2, f2|ρ−1|e2, f2

〉
−
∥∥∥〈e1, f1|ρ−1|e2, f2

〉∥∥∥2
.

But we also have to consider the BSA manifold forρTA . This one is given by

F̃ (�1,�2) ≡ 1 −�1D
1
1 −�2D

1
2 −�1�2D

1 = 0 (B2)

where

D1
1 = 〈

e∗1, f1
∣∣(ρtA)−1∣∣e∗1, f1

〉
D1

2 = 〈
e∗2, f2

∣∣(ρtA)−1
∣∣e∗2, f2

〉
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Figure 1. The manifold F = 0 is under F̃ = 0.

and

D1 = 〈
e∗1, f1

∣∣(ρtA)−1∣∣e∗1, f1
〉〈
e∗2, f2

∣∣(ρtA)−1
∣∣e∗2, f2

〉− ∥∥〈e∗1 − f1
∣∣(ρtA)−1∣∣e∗2, f2

〉∥∥2
.

Now we have to consider two basic cases which can occur.

Case 1. One of the BSA manifolds is under the other manifold. Without losing generality we
assume that this is F = 0. Then, we have the situation as in figure 1. In this case we have to
take the maximum on the manifold F = 0. From lemma 2 we know explicitly the condition
for that. Of course, we are also including in case 1 that there can be an overlap at one endpoint
(i.e. if 1/D0

1 = 1/D1
1).

Case 2. The manifolds have a cross section point between 0 < �1 � max
(
1/D0

1, 1/D1
1

)
.

Without losing generality we assume that this describes figure 2. Now we can see from figure 2
how the PPT BSA manifold F̄ = 0 is constructed, and why it is not differentiable everywhere.

λ

λ

0 λ

F=0

F=0

~

s

2

2

1

1

1

D

D

1 1
D D

0

0
1

2

1

1
1

Figure 2. The manifolds have a cross section point λs.

Let us denote by �m the maxima of the manifold F = 0 and also �̃m as the maxima of
F̃ = 0. Now we can have the following situations:

• If �m < λs and �̃m < λs then one has to take �max = �m;
• If �m > λs and �̃m > λs then one has to take �max = �̃m;
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• If �̃m > λs and �m < λs then one has to take �max = λs;
• Both maxima are in λs, so that �max = �s;
• The case where �̃m > λs and �m > λs cannot occur.
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